Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
J Mol Model ; 29(6): 183, 2023 May 22.
Article in English | MEDLINE | ID: covidwho-2325832

ABSTRACT

CONTEXT: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 infection and responsible for millions of victims worldwide, remains a significant threat to public health. Even after the development of vaccines, research interest in the emergence of new variants is still prominent. Currently, the focus is on the search for effective and safe drugs, given the limitations and side effects observed for the synthetic drugs administered so far. In this sense, bioactive natural products that are widely used in the pharmaceutical industry due to their effectiveness and low toxicity have emerged as potential options in the search for safe drugs against COVID-19. Following this line, we screened 10 bioactive compounds derived from cholesterol for molecules capable of interacting with the receptor-binding domain (RBD) of the spike protein from SARS-CoV-2 (SC2Spike), responsible for the virus's invasion of human cells. Rounds of docking followed by molecular dynamics simulations and binding energy calculations enabled the selection of three compounds worth being experimentally evaluated against SARS-CoV-2. METHODS: The 3D structures of the cholesterol derivatives were prepared and optimized using the Spartan 08 software with the semi-empirical method PM3. They were then exported to the Molegro Virtual Docking (MVD®) software, where they were docked onto the RBD of a 3D structure of the SC2Spike protein that was imported from the Protein Data Bank (PDB). The best poses obtained from MVD® were subjected to rounds of molecular dynamics simulations using the GROMACS software, with the OPLS/AA force field. Frames from the MD simulation trajectories were used to calculate the ligand's free binding energies using the molecular mechanics - Poisson-Boltzmann surface area (MM-PBSA) method. All results were analyzed using the xmgrace and Visual Molecular Dynamics (VMD) software.


Subject(s)
Biological Products , COVID-19 , Humans , SARS-CoV-2 , Biological Products/pharmacology , Molecular Dynamics Simulation , Databases, Protein , Molecular Docking Simulation , Antiviral Agents/pharmacology
2.
Viruses ; 15(4)2023 03 23.
Article in English | MEDLINE | ID: covidwho-2299021

ABSTRACT

Viruses with rapid replication and easy mutation can become resistant to antiviral drug treatment. With novel viral infections emerging, such as the recent COVID-19 pandemic, novel antiviral therapies are urgently needed. Antiviral proteins, such as interferon, have been used for treating chronic hepatitis C infections for decades. Natural-origin antimicrobial peptides, such as defensins, have also been identified as possessing antiviral activities, including direct antiviral effects and the ability to induce indirect immune responses to viruses. To promote the development of antiviral drugs, we constructed a data repository of antiviral peptides and proteins (DRAVP). The database provides general information, antiviral activity, structure information, physicochemical information, and literature information for peptides and proteins. Because most of the proteins and peptides lack experimentally determined structures, AlphaFold was used to predict each antiviral peptide's structure. A free website for users (http://dravp.cpu-bioinfor.org/, accessed on 30 August 2022) was constructed to facilitate data retrieval and sequence analysis. Additionally, all the data can be accessed from the web interface. The DRAVP database aims to be a useful resource for developing antiviral drugs.


Subject(s)
COVID-19 , Viruses , Humans , Antiviral Agents/pharmacology , Pandemics , Peptides/pharmacology , Viruses/genetics , Databases, Protein
3.
Trends Biochem Sci ; 48(7): 590-596, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2293793

ABSTRACT

Investigating large datasets of biological information by automatic procedures may offer chances of progress in knowledge. Recently, tremendous improvements in structural biology have allowed the number of structures in the Protein Data Bank (PDB) archive to increase rapidly, in particular those for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated proteins. However, their automatic analysis can be hampered by the nonuniform descriptors used by authors in some records of the PDB and PDBx/mmCIF files. In this opinion article we highlight the difficulties encountered in automating the analysis of hundreds of structures, suggesting that further standardization of the description of these molecular entities and of their attributes, generalized to the macromolecular structures contained in the PDB, might generate files more suitable for automatized analyses of a large number of structures.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Proteins/chemistry , Molecular Structure , Databases, Protein , Protein Conformation
4.
Acta Crystallogr D Struct Biol ; 79(Pt 3): 206-211, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2260053

ABSTRACT

During the COVID-19 pandemic, the structural biology community swung into action quickly and efficiently, and many urgent questions were solved by macromolecular structure determination. The Coronavirus Structural Task Force evaluated all structures from SARS-CoV-1 and SARS-CoV-2, but errors in measurement, data processing and modelling are present beyond these structures and throughout the structures deposited in the Protein Data Bank. Identifying them is only the first step; in order to minimize the impact that errors have in structural biology, error culture needs to change. It should be emphasized that the atomic model which is published is an interpretation of the measurement. Furthermore, risks should be minimized by addressing issues early and by investigating the source of a given problem, so that it may be avoided in the future. If we as a community can do this, it will greatly benefit experimental structural biologists as well as downstream users who are using structural models to deduce new biological and medical answers in the future.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2 , Databases, Protein , Biology
5.
Front Cell Infect Microbiol ; 13: 1141274, 2023.
Article in English | MEDLINE | ID: covidwho-2281054

ABSTRACT

Introduction: With the emergence of SARS-CoV-2 mutant strains, especially the epidemic of Omicron, it continues to evolve to strengthen immune evasion. Omicron BQ. 1 and XBB pose a serious threat to the current COVID-19 vaccine (including bivalent mRNA vaccine for mutant strains) and COVID-19-positive survivors, and all current therapeutic monoclonal antibodies are ineffective against them. Older people, those with multimorbidity, and those with specific underlying health conditions remain at increased risk of COVID-19 hospitalization and death after the initial vaccine booster. However, small-molecule drugs for conserved targets remain effective and urgently needed. Methods: The non-structural protein of SARS-CoV-2 non-structural protein 1(Nsp1) can bind to the host 40S ribosomal subunit and activate the nuclease to hydrolyze the host RNA, while the viral RNA is unaffected, thus hijacking the host system. First, the present study analyzed mutations in the Nsp1 protein and then constructed a maximum-likelihood phylogenetic tree. A virtual drug screening method based on the Nsp1 structure (Protein Data Bank ID: 7K5I) was constructed, 7495 compounds from three databases were collected for molecular docking and virtual screening, and the binding free energy was calculated by the MM/GBSA method. Results: Our study shows that Nsp1 is relatively conserved and can be used as a comparatively fixed drug target and that therapies against Nsp1 will target all of these variants. Golvatinib, Gliquidone, and Dihydroergotamine were superior to other compounds in the crystal structure of binding conformation and free energy. All effectively interfered with Nsp1 binding to 40S protein, confirming the potential inhibitory effect of these three compounds on SARS-CoV-2. Discussion: In particular, Golwatinib provides a candidate for treatment and prophylaxis in elderly patients with Omicjon, suggesting further evaluation of the anti-SARS-CoV-2 activity of these compounds in cell culture. Further studies are needed to determine the utility of this finding through prospective clinical trials and identify other meaningful drug combinations.


Subject(s)
COVID-19 , Aged , Humans , COVID-19 Vaccines , Molecular Docking Simulation , Phylogeny , Prospective Studies , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Databases, Protein , Drug Delivery Systems
6.
Comput Biol Med ; 158: 106814, 2023 05.
Article in English | MEDLINE | ID: covidwho-2273828

ABSTRACT

This paper presents a novel framework, called PSAC-PDB, for analyzing and classifying protein structures from the Protein Data Bank (PDB). PSAC-PDB first finds, analyze and identifies protein structures in PDB that are similar to a protein structure of interest using a protein structure comparison tool. Second, the amino acids (AA) sequences of identified protein structures (obtained from PDB), their aligned amino acids (AAA) and aligned secondary structure elements (ASSE) (obtained by structural alignment), and frequent AA (FAA) patterns (discovered by sequential pattern mining), are used for the reliable detection/classification of protein structures. Eleven classifiers are used and their performance is compared using six evaluation metrics. Results show that three classifiers perform well on overall, and that FAA patterns can be used to efficiently classify protein structures in place of providing the whole AA sequences, AAA or ASSE. Furthermore, better classification results are obtained using AAA of protein structures rather than AA sequences. PSAC-PDB also performed better than state-of-the-art approaches for SARS-CoV-2 genome sequences classification.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Protein Structure, Secondary , Amino Acids , Databases, Protein , Protein Conformation
7.
Nucleic Acids Res ; 50(D1): D497-D508, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-2232151

ABSTRACT

Almost twenty years after its initial release, the Eukaryotic Linear Motif (ELM) resource remains an invaluable source of information for the study of motif-mediated protein-protein interactions. ELM provides a comprehensive, regularly updated and well-organised repository of manually curated, experimentally validated short linear motifs (SLiMs). An increasing number of SLiM-mediated interactions are discovered each year and keeping the resource up-to-date continues to be a great challenge. In the current update, 30 novel motif classes have been added and five existing classes have undergone major revisions. The update includes 411 new motif instances mostly focused on cell-cycle regulation, control of the actin cytoskeleton, membrane remodelling and vesicle trafficking pathways, liquid-liquid phase separation and integrin signalling. Many of the newly annotated motif-mediated interactions are targets of pathogenic motif mimicry by viral, bacterial or eukaryotic pathogens, providing invaluable insights into the molecular mechanisms underlying infectious diseases. The current ELM release includes 317 motif classes incorporating 3934 individual motif instances manually curated from 3867 scientific publications. ELM is available at: http://elm.eu.org.


Subject(s)
Communicable Diseases/genetics , Databases, Protein , Host-Pathogen Interactions/genetics , Protein Interaction Domains and Motifs , Software , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Animals , Binding Sites , Cell Cycle/genetics , Cell Membrane/chemistry , Cell Membrane/metabolism , Communicable Diseases/metabolism , Communicable Diseases/virology , Cyclins/chemistry , Cyclins/genetics , Cyclins/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism , Eukaryotic Cells/virology , Gene Expression Regulation , Humans , Integrins/chemistry , Integrins/genetics , Integrins/metabolism , Mice , Molecular Sequence Annotation , Protein Binding , Rats , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction , Transport Vesicles/chemistry , Transport Vesicles/metabolism , Viruses/genetics , Viruses/metabolism
8.
Structure ; 28(8): 874-878, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-2132441

ABSTRACT

During global pandemics, the spread of information needs to be faster than the spread of the virus in order to ensure the health and safety of human populations worldwide. In our current crisis, the demand for SARS-CoV-2 drugs and vaccines highlights the importance of biological targets and their three-dimensional shape. In particular, structural biology as a field was poised to quickly respond to crises due to previous experience and expertise and because of its early adoption of open access practices.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Viral Proteins/chemistry , COVID-19 , Coronavirus 3C Proteases , Coronavirus RNA-Dependent RNA Polymerase , Cysteine Endopeptidases/chemistry , Databases, Protein , Humans , Models, Molecular , Molecular Biology , Protein Conformation , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Viral Nonstructural Proteins/chemistry
9.
Immunogenetics ; 74(5): 465-474, 2022 10.
Article in English | MEDLINE | ID: covidwho-2048215

ABSTRACT

We herein analyzed all available protein-protein interfaces of the immune complexes from the Protein Data Bank whose antigens belong to pathogens or cancers that are modulated by fever in mammalian hosts. We also included, for comparison, protein interfaces from immune complexes that are not significantly modulated by the fever response. We highlight the distribution of amino acids at these viral, bacterial, protozoan and cancer epitopes, and at their corresponding paratopes that belong strictly to monoclonal antibodies. We identify the "hotspots", i.e. residues that are highly connected at such interfaces, and assess the structural, kinetic and thermodynamic parameters responsible for complex formation. We argue for an evolutionary pressure for the types of residues at these protein interfaces that may explain the role of fever as a selective force for optimizing antibody binding to antigens.


Subject(s)
Antibodies, Monoclonal , Antigen-Antibody Complex , Animals , Antibodies, Monoclonal/metabolism , Antigen-Antibody Complex/chemistry , Binding Sites, Antibody , Databases, Protein , Epitopes , Mammals
10.
Int J Mol Sci ; 23(13)2022 Jun 21.
Article in English | MEDLINE | ID: covidwho-1934117

ABSTRACT

RNA-protein complexes regulate a variety of biological functions. Thus, it is essential to explore and visualize RNA-protein structural interaction features, especially pocket interactions. In this work, we develop an easy-to-use bioinformatics resource: RPpocket. This database provides RNA-protein complex interactions based on sequence, secondary structure, and pocket topology analysis. We extracted 793 pockets from 74 non-redundant RNA-protein structures. Then, we calculated the binding- and non-binding pocket topological properties and analyzed the binding mechanism of the RNA-protein complex. The results showed that the binding pockets were more extended than the non-binding pockets. We also found that long-range forces were the main interaction for RNA-protein recognition, while short-range forces strengthened and optimized the binding. RPpocket could facilitate RNA-protein engineering for biological or medical applications.


Subject(s)
Proteins , RNA , Binding Sites , Databases, Protein , Ligands , Models, Molecular , Proteins/chemistry
11.
J Proteome Res ; 20(12): 5227-5240, 2021 12 03.
Article in English | MEDLINE | ID: covidwho-1683909

ABSTRACT

The 2021 Metrics of the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 357 (92.8%) of the 19 778 predicted proteins coded in the human genome, a gain of 483 since 2020 from reports throughout the world reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 478 to 1421. This represents remarkable progress on the proteome parts list. The utilization of proteomics in a broad array of biological and clinical studies likewise continues to expand with many important findings and effective integration with other omics platforms. We present highlights from the Immunopeptidomics, Glycoproteomics, Infectious Disease, Cardiovascular, Musculo-Skeletal, Liver, and Cancers B/D-HPP teams and from the Knowledgebase, Mass Spectrometry, Antibody Profiling, and Pathology resource pillars, as well as ethical considerations important to the clinical utilization of proteomics and protein biomarkers.


Subject(s)
Benchmarking , Proteome , Databases, Protein , Humans , Mass Spectrometry/methods , Proteome/analysis , Proteome/genetics , Proteomics/methods
12.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: covidwho-1621333

ABSTRACT

The emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major concern given their potential impact on the transmissibility and pathogenicity of the virus as well as the efficacy of therapeutic interventions. Here, we predict the mutability of all positions in SARS-CoV-2 protein domains to forecast the appearance of unseen variants. Using sequence data from other coronaviruses, preexisting to SARS-CoV-2, we build statistical models that not only capture amino acid conservation but also more complex patterns resulting from epistasis. We show that these models are notably superior to conservation profiles in estimating the already observable SARS-CoV-2 variability. In the receptor binding domain of the spike protein, we observe that the predicted mutability correlates well with experimental measures of protein stability and that both are reliable mutability predictors (receiver operating characteristic areas under the curve ∼0.8). Most interestingly, we observe an increasing agreement between our model and the observed variability as more data become available over time, proving the anticipatory capacity of our model. When combined with data concerning the immune response, our approach identifies positions where current variants of concern are highly overrepresented. These results could assist studies on viral evolution and future viral outbreaks and, in particular, guide the exploration and anticipation of potentially harmful future SARS-CoV-2 variants.


Subject(s)
COVID-19/virology , Epistasis, Genetic , Epitopes , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/chemistry , Algorithms , Area Under Curve , Computational Biology/methods , DNA Mutational Analysis , Databases, Protein , Deep Learning , Epitopes/chemistry , Genome, Viral , Humans , Models, Statistical , Mutagenesis , Probability , Protein Domains , ROC Curve
13.
Nucleic Acids Res ; 50(D1): D1-D10, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1607482

ABSTRACT

The 2022 Nucleic Acids Research Database Issue contains 185 papers, including 87 papers reporting on new databases and 85 updates from resources previously published in the Issue. Thirteen additional manuscripts provide updates on databases most recently published elsewhere. Seven new databases focus specifically on COVID-19 and SARS-CoV-2, including SCoV2-MD, the first of the Issue's Breakthrough Articles. Major nucleic acid databases reporting updates include MODOMICS, JASPAR and miRTarBase. The AlphaFold Protein Structure Database, described in the second Breakthrough Article, is the stand-out in the protein section, where the Human Proteoform Atlas and GproteinDb are other notable new arrivals. Updates from DisProt, FuzDB and ELM comprehensively cover disordered proteins. Under the metabolism and signalling section Reactome, ConsensusPathDB, HMDB and CAZy are major returning resources. In microbial and viral genomes taxonomy and systematics are well covered by LPSN, TYGS and GTDB. Genomics resources include Ensembl, Ensembl Genomes and UCSC Genome Browser. Major returning pharmacology resource names include the IUPHAR/BPS guide and the Therapeutic Target Database. New plant databases include PlantGSAD for gene lists and qPTMplants for post-translational modifications. The entire Database Issue is freely available online on the Nucleic Acids Research website (https://academic.oup.com/nar). Our latest update to the NAR online Molecular Biology Database Collection brings the total number of entries to 1645. Following last year's major cleanup, we have updated 317 entries, listing 89 new resources and trimming 80 discontinued URLs. The current release is available at http://www.oxfordjournals.org/nar/database/c/.


Subject(s)
Databases, Factual , Molecular Biology , Animals , COVID-19 , Databases, Nucleic Acid , Databases, Protein , Genome, Microbial , Genome, Viral , Humans , Mice , Plants/genetics , Protein Processing, Post-Translational , Proteome , SARS-CoV-2/genetics , Signal Transduction
14.
Cell Chem Biol ; 28(12): 1795-1806.e5, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1599513

ABSTRACT

Designing covalent inhibitors is increasingly important, although it remains challenging. Here, we present covalentizer, a computational pipeline for identifying irreversible inhibitors based on structures of targets with non-covalent binders. Through covalent docking of tailored focused libraries, we identify candidates that can bind covalently to a nearby cysteine while preserving the interactions of the original molecule. We found âˆ¼11,000 cysteines proximal to a ligand across 8,386 complexes in the PDB. Of these, the protocol identified 1,553 structures with covalent predictions. In a prospective evaluation, five out of nine predicted covalent kinase inhibitors showed half-maximal inhibitory concentration (IC50) values between 155 nM and 4.5 µM. Application against an existing SARS-CoV Mpro reversible inhibitor led to an acrylamide inhibitor series with low micromolar IC50 values against SARS-CoV-2 Mpro. The docking was validated by 12 co-crystal structures. Together these examples hint at the vast number of covalent inhibitors accessible through our protocol.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , Acrylamide/chemistry , Acrylamide/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Computational Biology/methods , Databases, Protein , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , SARS-CoV-2/isolation & purification , Viral Matrix Proteins/metabolism
15.
Biol Pharm Bull ; 45(1): 19-26, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1599098

ABSTRACT

With the development of structural biology and data mining, computer-aided drug design (CADD) has been playing an important role in all aspects of new drug development. Reverse docking, a method of virtual screening based on molecular docking in CADD, is widely used in drug repositioning, drug rescue, and traditional Chinese medicine (TCM) research, for it can search for macromolecular targets that can bind to a given ligand molecule. This review revealed the principle of reverse docking, summarized common target protein databases and docking procedures, and enumerated the applications of reverse docking in drug repositioning, adverse drug reactions, traditional Chinese medicine, and coronavirus disease 2019 (COVID-19) treatment. Hope our work can give some inspiration to researchers engaged in drug development.


Subject(s)
Drug Design , Molecular Docking Simulation , COVID-19 , Databases, Protein , Drug Repositioning , Drug-Related Side Effects and Adverse Reactions , Humans , Medicine, Chinese Traditional , SARS-CoV-2/drug effects
16.
Viruses ; 13(12)2021 11 26.
Article in English | MEDLINE | ID: covidwho-1551632

ABSTRACT

Most viruses have small genomes that encode proteins needed to perform essential enzymatic functions. Across virus families, primary enzyme functions are under functional constraint; however, secondary functions mediated by exposed protein surfaces that promote interactions with the host proteins may be less constrained. Viruses often form transient interactions with host proteins through conformationally flexible interfaces. Exposed flexible amino acid residues are known to evolve rapidly suggesting that secondary functions may generate diverse interaction potentials between viruses within the same viral family. One mechanism of interaction is viral mimicry through short linear motifs (SLiMs) that act as functional signatures in host proteins. Viral SLiMs display specific patterns of adjacent amino acids that resemble their host SLiMs and may occur by chance numerous times in viral proteins due to mutational and selective processes. Through mimicry of SLiMs in the host cell proteome, viruses can interfere with the protein interaction network of the host and utilize the host-cell machinery to their benefit. The overlap between rapidly evolving protein regions and the location of functionally critical SLiMs suggest that these motifs and their functional potential may be rapidly rewired causing variation in pathogenicity, infectivity, and virulence of related viruses. The following review provides an overview of known viral SLiMs with select examples of their role in the life cycle of a virus, and a discussion of the structural properties of experimentally validated SLiMs highlighting that a large portion of known viral SLiMs are devoid of predicted intrinsic disorder based on the viral SLiMs from the ELM database.


Subject(s)
Host-Pathogen Interactions , Intrinsically Disordered Proteins/metabolism , Viral Proteins/metabolism , Amino Acid Motifs , Databases, Protein , Humans , Intrinsically Disordered Proteins/genetics , Protein Interaction Maps , Proteome , Viral Proteins/genetics , Viruses/genetics
18.
Nucleic Acids Res ; 50(D1): D11-D19, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1546006

ABSTRACT

The European Bioinformatics Institute (EMBL-EBI) maintains a comprehensive range of freely available and up-to-date molecular data resources, which includes over 40 resources covering every major data type in the life sciences. This year's service update for EMBL-EBI includes new resources, PGS Catalog and AlphaFold DB, and updates on existing resources, including the COVID-19 Data Platform, trRosetta and RoseTTAfold models introduced in Pfam and InterPro, and the launch of Genome Integrations with Function and Sequence by UniProt and Ensembl. Furthermore, we highlight projects through which EMBL-EBI has contributed to the development of community-driven data standards and guidelines, including the Recommended Metadata for Biological Images (REMBI), and the BioModels Reproducibility Scorecard. Training is one of EMBL-EBI's core missions and a key component of the provision of bioinformatics services to users: this year's update includes many of the improvements that have been developed to EMBL-EBI's online training offering.


Subject(s)
Computational Biology/education , Computational Biology/methods , Databases, Factual , Academies and Institutes , Artificial Intelligence , COVID-19 , Databases, Factual/economics , Databases, Factual/statistics & numerical data , Databases, Pharmaceutical , Databases, Protein , Europe , Genome, Human , Humans , Information Storage and Retrieval , RNA, Untranslated/genetics , SARS-CoV-2/genetics
19.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1534086

ABSTRACT

Transmembrane proteins (TMPs) play important roles in cells, ranging from transport processes and cell adhesion to communication. Many of these functions are mediated by intrinsically disordered regions (IDRs), flexible protein segments without a well-defined structure. Although a variety of prediction methods are available for predicting IDRs, their accuracy is very limited on TMPs due to their special physico-chemical properties. We prepared a dataset containing membrane proteins exclusively, using X-ray crystallography data. MemDis is a novel prediction method, utilizing convolutional neural network and long short-term memory networks for predicting disordered regions in TMPs. In addition to attributes commonly used in IDR predictors, we defined several TMP specific features to enhance the accuracy of our method further. MemDis achieved the highest prediction accuracy on TMP-specific dataset among other popular IDR prediction methods.


Subject(s)
Computational Biology/methods , Intrinsically Disordered Proteins/chemistry , Membrane Proteins/chemistry , Neural Networks, Computer , Amino Acid Sequence , Data Mining/methods , Databases, Protein/statistics & numerical data , Internet , Models, Molecular , Protein Conformation , Reproducibility of Results
20.
Protein Sci ; 31(1): 141-146, 2022 01.
Article in English | MEDLINE | ID: covidwho-1520274

ABSTRACT

The antibody repertoires of individuals and groups have been used to explore disease states, understand vaccine responses, and drive therapeutic development. The arrival of B-cell receptor repertoire sequencing has enabled researchers to get a snapshot of these antibody repertoires, and as more data are generated, increasingly in-depth studies are possible. However, most publicly available data only exist as raw FASTQ files, making the data hard to access, process, and compare. The Observed Antibody Space (OAS) database was created in 2018 to offer clean, annotated, and translated repertoire data. In this paper, we describe an update to OAS that has been driven by the increasing volume of data and the appearance of paired (VH/VL) sequence data. OAS is now accessible via a new web server, with standardized search parameters and a new sequence-based search option. The new database provides both nucleotides and amino acids for every sequence, with additional sequence annotations to make the data Minimal Information about Adaptive Immune Receptor Repertoire compliant, and comments on potential problems with the sequence. OAS now contains 25 new studies, including severe acute respiratory syndrome coronavirus 2 data and paired sequencing data. The new database is accessible at http://opig.stats.ox.ac.uk/webapps/oas/, and all data are freely available for download.


Subject(s)
Antibodies/chemistry , Databases, Protein , Amino Acid Sequence , Animals , Antibodies/immunology , COVID-19/immunology , Humans , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/immunology , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/immunology , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL